Introduction to Quantum Computing

Kitty Yeung, Ph.D. in Applied Physics

Creative Technologist + Sr. PM Microsoft

y	
0	

www.artbyphysicistkittyyeung.com @KittyArtPhysics @artbyphysicistkittyyeung

April 19, 2020 Hackaday, session 4

Class structure

- <u>Comics on Hackaday Introduction to Quantum</u> <u>Computing</u> every Wed & Sun
- 30 mins every Sun, one concept (theory, hardware, programming), Q&A
- Contribute to Q# documentation
 <u>http://docs.microsoft.com/quantum</u>
- Coding through Quantum Katas
 <u>https://github.com/Microsoft/QuantumKatas/</u>
- Discuss in Hackaday project comments throughout the week
- Take notes

Past concepts

- Superposition
- Interference (measurement result is a result of interference)
- Entanglement (results of entangled qubits are correlated)

Graphic representation of a qubit

Graphic representation of a qubit

Graphic representation of a qubit

Bloch sphere

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{-i\phi}\sin\frac{\theta}{2}|1\rangle$$

the states $|0\rangle$ and $|1\rangle$ are just two special cases with $\theta = 0^{\circ}$ and 180°, respectively.

Gates (quantum operations)

make up any number.

the qubit to anywhere on the Bloch sphere.

Pauli gates

 $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

 $X\binom{\alpha}{\beta} = \binom{\beta}{\alpha}$

Pauli gates

Pauli gates

Hadamard H

$$H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Hadamard H

 $H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$

$$H|0\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$= \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \equiv |+\rangle$$

$$H|1\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$= \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \equiv |-\rangle.$$

Another important gate is the H
(or Hadamard) gate. It changes states
|> and |1> and creates two new states
in between them:

$$H|0>=|+>=(|0>+|1>)/\sqrt{2}$$

$$H|1>=|->=(|0>-|1>)/\sqrt{2}$$

$$H=\frac{1}{\sqrt{2}}\left(\begin{array}{c}1&1\\1&-1\end{array}\right)$$
And some other commonly used gates:

$$S=^{2}\sqrt{2} = \left(\begin{array}{c}0\\0\\i\end{array}\right)$$
Rotates about z-axis by 90°

$$T=^{4}\sqrt{2} = \left(\begin{array}{c}0\\0\\i\end{array}\right)$$
Rotates about z-axis by 45°

$$R_{8}=^{3}\sqrt{2} = \left(\begin{array}{c}0\\0\\i\end{array}\right)$$
Rotates about z-axis by 22,5°

But these are all for a single qubit. What about gates for multiple qubits?

IBM Research Published on May 31, 2017 SUBSCRIBE 27K

Gates

manipulate qubit states (vectors) through matrix multiplications

Unitarity $U^{\dagger}U = I$

So that it is reversible and probabilities add up to 1

Math insert – unitary, adjoint or Hermitian conjugate -----

In math, unitarity means $U^{\dagger}U = I$, where I is the identity matrix and the " \dagger " symbol (reads "dagger") means adjoint or Hermitian conjugate of matrix U. It can be further written as $U^{\dagger} = (U^*)^T = (U^T)^*$, where "T" denotes transpose and " \ast " complex conjugate:

$$\begin{pmatrix} U_1 \\ U_2 \\ \vdots \\ U_N \end{pmatrix}^T = (U_1 \quad U_2 \quad \dots \quad U_N)$$

and if $a = a_0 + ia_1$, then $a^* = a_0 - ia_1$ by definition. Therefore,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\dagger} = \begin{pmatrix} a^* & c^* \\ b^* & d^* \end{pmatrix}.$$

Q# exercise: option 1

No installation, web-based Jupyter Notebooks

• The Quantum Katas project (tutorials and exercises for learning quantum computing) <u>https://github.com/Microsoft/QuantumKatas</u>

Measurement – not a gate

BOTH HEAD AND TAIL ARE POSSEBLE

 (\mathbf{B})

MEASUREMENT

CANNOT RETURN TO PREVIOUS STATE

ONLY ONE OUTCOME

 $|\psi\rangle = c_{00}|00\rangle + c_{01}|01\rangle + c_{10}|10\rangle + c_{11}|11\rangle$

 $P = |c_{00}|^2 + |c_{01}|^2$ If first qubit is 0

 $|\psi'\rangle = \frac{c_{00}|00\rangle + c_{01}|01\rangle}{\sqrt{P}}$

After measurement

Not reversible

Measurement

If we use the wavefunction approach, we can derive the value we'd expect to measure for a large number of measurements of a given observable, *M*. The expectation value can be obtained as

$$\langle M
angle = \langle \psi | M | \psi
angle = \sum_j m_j | c_j |^2$$
 ,

where m_j is each measurement result of M, and $|c_j|^2 = P(m_j)$ is the probability of getting result m_j . Obtaining m_j leaves the system in the state $|\psi_j\rangle$. This unavoidable disturbance of the system caused by the measurement process is often described as a "collapse," a "projection" or a "reduction" of the wavefunction.