Introduction to Quantum Computing

Kitty Yeung, Ph.D. in Applied Physics

Creative Technologist + Sr. PM Microsoft
www.artbyphysicistkittyyeung.com Y @KittyArtPhysics
(O) @artbyphysicistkittyyeung

April 19, 2020
Hackaday, session 4

Class structure

- Comics on Hackaday - Introduction to Quantum

Computing every Wed \& Sun

- 30 mins every Sun, one concept (theory, hardware, programming), Q\&A
- Contribute to Q\# documentation http://docs.microsoft.com/quantum
- Coding through Quantum Katas
https://github.com/Microsoft/QuantumKatas/
- Discuss in Hackaday project comments throughout the week
- Take notes

Past concepts

- Superposition
- Interference (measurement result is a result of interference)
- Entanglement (results of entangled qubits are correlated)

Graphic representation of a qubit

REAL NUMBER

Graphic representation of a qubit

Graphic representation of a qubit

Bloch sphere

Arbitrary state

$$
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{-i \phi} \sin \frac{\theta}{2}|1\rangle
$$

the states $|0\rangle$ and $|1\rangle$ are just two special cases with $\theta=0^{\circ}$ and 180°, respectively.

Gates (quantum operations)

$$
\left(\begin{array}{cc}
e^{-i \phi / 2} & 0 \\
0 & e^{i \phi / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\
\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right)\binom{\cos \frac{\theta}{2}}{e^{-i \phi} \sin \frac{\theta}{2}}
$$

Like a set of coins, a combination of them can make up any number.

We can have a set of matrix operations (gates) that moves the qubit to anywhere on the Bloch sphere.

Pauli gates

$$
\begin{aligned}
& X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& X\binom{\alpha}{\beta}=\binom{\beta}{\alpha}
\end{aligned}
$$

Pauli gates

$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

$$
Y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]
$$

$$
X\binom{\alpha}{\beta}=\binom{\beta}{\alpha}
$$

$$
Y\binom{\alpha}{\beta}=i\binom{-\beta}{\alpha}
$$

Pauli gates

$$
\begin{array}{lll}
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] & Y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] & Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
X\binom{\alpha}{\beta}=\binom{\beta}{\alpha} & Y\binom{\alpha}{\beta}=i\binom{-\beta}{\alpha} & Z\binom{\alpha}{\beta}=\binom{\alpha}{-\beta}
\end{array}
$$

Pauli Y

Pauli Z

To change the phase φ, we have a commonly used gate, Z, which rotates about the z-axis by 180° 。

0.4 .18

Similarly, the x gate rotates about the

x-axis by 180°, rotating the angle θ
eogo $x|0\rangle=|1\rangle, x|1\rangle=|0\rangle$ 。

$$
x=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

We have seen in page 18 the two matrices for changing φ and θ in arbitraty amounts. They form a universal gate set - they can put a state anywhere on the Bloch Sphere. The gates Z and X are special cases of them.

Hadamard H

$$
H=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Hadamard H

$$
H=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

$$
\begin{aligned}
& H|0\rangle=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\binom{1}{0} \\
& =\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=\frac{1}{\sqrt{2}}\binom{1}{0}+\frac{1}{\sqrt{2}}\binom{0}{1} \\
& =\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \equiv|+\rangle
\end{aligned}
$$

$$
H|1\rangle=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\binom{0}{1}
$$

$$
=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \equiv|-\rangle .
$$

Another important gate is the H (or Hadamard) gate. It changes states $\mid 0>$ and $\mid 1>$ and creates two new states in between them:

$$
\begin{aligned}
& H|0\rangle=|+\rangle=(|0\rangle+|1\rangle) / \sqrt{ } 2 \\
& H|1\rangle=|->=(|0\rangle-|1\rangle) / \sqrt{ } 2 \\
& H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
\end{aligned}
$$

And some other commonly used gates:

$$
\begin{array}{ll}
S=\sqrt[2]{z}=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) & \text { Rotates about z-axis by } 90^{\circ} \\
T=\sqrt[4]{z}=\left(\begin{array}{ll}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right) \quad \text { Rotates about z-axis by } 45^{\circ} \\
R 8=\sqrt[8]{z}=\left(\begin{array}{ll}
1 & 0 \\
0 & e^{i \pi / 8}
\end{array}\right) \quad \text { Rotates about z-axis by } 22.5^{\circ}
\end{array}
$$

But these are all for a single quit. What about gates for multiple quits?

Gates

Unitarity $U^{\dagger} U=I$

So that it is reversible and probabilities add up to 1

Math insert - unitary, adjoint or Hermitian conjugate

In math, unitarity means $U^{\dagger} U=I$, where I is the identity matrix and the " \dagger " symbol (reads "dagger") means adjoint or Hermitian conjugate of matrix U. It can be further written as $U^{\dagger}=\left(U^{*}\right)^{T}=\left(U^{T}\right)^{*}$, where " T " denotes transpose and "*" complex conjugate:

$$
\left(\begin{array}{c}
U_{1} \\
U_{2} \\
\vdots \\
U_{N}
\end{array}\right)^{T}=\left(\begin{array}{llll}
U_{1} & U_{2} & \ldots & U_{N}
\end{array}\right)
$$

and if $a=a_{0}+i a_{1}$, then $a^{*}=a_{0}-i a_{1}$ by definition. Therefore,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{+}=\left(\begin{array}{ll}
a^{*} & c^{*} \\
b^{*} & d^{*}
\end{array}\right)
$$

manipulate qubit states (vectors) through matrix multiplications

Q\# exercise: option 1

No installation, web-based Jupyter Notebooks

- The Quantum Katas project (tutorials and exercises for learning quantum computing) https://github.com/Microsoft/QuantumKatas

Measurement - not a gate

$$
\begin{aligned}
& |\psi\rangle=c_{00}|00\rangle+c_{01}|01\rangle+c_{10}|10\rangle+c_{11}|11\rangle \\
& P=\left|c_{00}\right|^{2}+\left|c_{01}\right|^{2} \quad \text { If first qubit is } 0 \\
& \left|\psi^{\prime}\right\rangle=\frac{c_{00}|00\rangle+c_{01}|01\rangle}{\sqrt{P}} \quad \text { After measurement }
\end{aligned}
$$

Not reversible

Measurement

If we use the wavefunction approach, we can derive the value we'd expect to measure for a large number of measurements of a given observable, M. The expectation value can be obtained as

$$
\langle M\rangle=\langle\psi| M|\psi\rangle=\sum_{j} m_{j}\left|c_{j}\right|^{2},
$$

where m_{j} is each measurement result of M, and $\left|c_{j}\right|^{2}=P\left(m_{j}\right)$ is the probability of getting result m_{j}. Obtaining m_{j} leaves the system in the state $\left|\psi_{j}\right\rangle$. This unavoidable disturbance of the system caused by the measurement process is often described as a "collapse," a "projection" or a "reduction" of the wavefunction.

